Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Lab Anal ; 37(7): e24889, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20235392

ABSTRACT

BACKGROUND: Polymerase chain reaction (PCR) has been widely used for many pathogen detection. However, PCR technology still suffers from long detection time and insufficient sensitivity. Recombinase-aided amplification (RAA) is a powerful nucleic acid detection tool with high sensitivity and amplification efficiency, but its complex probes and inability of multiplex detection hinder the further application of this technology. METHODS: In this study, we developed and validated the multiplex reverse transcription recombinase-aided PCR (multiplex RT-RAP) assay for human adenovirus 3 (HADV3), human adenovirus 7 (HADV7), and human respiratory syncytial virus (HRSV) within 1 h with Human RNaseP protein as a reference gene to monitor the whole process. RESULTS: Using recombinant plasmids, the sensitivity of multiplex RT-RAP for the detection of HADV3, HADV7, and HRSV was 18, 3, and 18 copies per reaction, respectively. The multiplex RT-RAP showed no cross-reactivity with other respiratory viruses, demonstrating its good specificity. A total of 252 clinical specimens were tested by multiplex RT-RAP and the results were found to be consistent with those of corresponding RT-qPCR assays. After testing serial dilutions of selected positive specimens, the detection sensitivity of multiplex RT-RAP was two to eightfold higher than that of corresponding RT-qPCR. CONCLUSION: We conclude the multiplex RT-RAP is a robust, rapid, highly sensitive, and specific assay with the potential to be used in the screening of clinical samples with low viral load.


Subject(s)
Adenoviruses, Human , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus, Human/genetics , Adenoviruses, Human/genetics , Reverse Transcription , Reverse Transcriptase Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction , Sensitivity and Specificity
3.
China CDC Wkly ; 5(7): 143-151, 2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2286143

ABSTRACT

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated 2,431 variants over the course of its global transmission over the past 3 years. To better evaluate the genomic variation of SARS-CoV-2 before and after the optimization of coronavirus disease 2019 (COVID-19) prevention and control strategies, we analyzed the genetic evolution branch composition and genomic variation of SARS-CoV-2 in both domestic and imported cases in China (the data from Hong Kong and Macau Special Administrative Regions and Taiwan, China were not included) from September 26, 2022 to January 29, 2023. Methods: Analysis of the number of genome sequences, sampling time, dynamic changes of evolutionary branches, origin, and clinical typing of SARS-CoV-2 variants submitted by 31 provincial-level administrative divisions (PLADs) and Xinjiang Production and Construction Corps (XPCC) was conducted to assess the accuracy and timeliness of SARS-CoV-2 variant surveillance. Results: From September 26, 2022 to January 29, 2023, 20,013 valid genome sequences of domestic cases were reported in China, with 72 evolutionary branches. Additionally, 1,978 valid genome sequences of imported cases were reported, with 169 evolutionary branches. The prevalence of the Omicron variants of SARS-CoV-2 in both domestic and imported cases was consistent with that of international epidemic variants. Conclusions: This study provides an overview of the prevalence of Omicron variants of SARS-CoV-2 in China. After optimizing COVID-19 prevention and control strategies, no novel Omicron variants of SARS-CoV-2 with altered biological characteristics or public health significance have been identified since December 1, 2022.

4.
Nature ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2269386

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

5.
Healthcare (Basel) ; 11(3)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2225126

ABSTRACT

The COVID-19 epidemic has spread worldwide, infected more than 0.6 billion people, and led to about 6 million deaths. Conducting large-scale COVID-19 nucleic acid testing is an effective measure to cut off the transmission chain of the COVID-19 epidemic, but it calls for deploying numerous nucleic acid testing sites effectively. In this study, we aim to optimize the large-scale nucleic acid testing with a dynamic testing site deployment strategy, and we propose a multiperiod location-allocation model, which explicitly considers the spatial-temporal distribution of the testing population and the time-varied availability of various testing resources. Several comparison models, which implement static site deployment strategies, are also developed to show the benefits of our proposed model. The effectiveness and benefits of our model are verified with a real-world case study on the Chenghua district of Chengdu, China, which indicates that the optimal total cost of the dynamic site deployment strategy can be 15% less than that of a real plan implemented in practice and about 2% less than those of the other comparison strategies. Moreover, we conduct sensitivity analysis to obtain managerial insights and suggestions for better testing site deployment in field practices. This study highlights the importance of dynamically deploying testing sites based on the target population's spatial-temporal distribution, which can help reduce the testing cost and increase the robustness of producing feasible plans with limited medical resources.

6.
Med Sci Monit ; 26: e926178, 2020 Sep 26.
Article in English | MEDLINE | ID: covidwho-796300

ABSTRACT

BACKGROUND The aim of this study was to assess the diagnostic utility of iron homeostasis determinations for prediction of severity of COVID-19. MATERIAL AND METHODS This was a retrospective study enrolling a total of 50 patients diagnosed with the novel coronavirus disease-19 (COVID-19) from February 27, 2020 to March 30, 2020, including a severe group (12 patients) and a mild group (38 patients). For the control group, 50 healthy people were examined during the same period. We compared clinical laboratory data and iron homeostasis biomarkers among the 3 groups. ROC curve analysis was used to assess diagnoses. RESULTS Patients diagnosed with severe COVID-19 had higher hepcidin and serum ferritin levels than in other groups (p<0.001). A combination test of hepcidin and serum ferritin provided the best specificity and sensitivity in the prognosis of COVID-19 severity. Logistic regression analysis showed hepcidin and serum ferritin independently contributed to the severity of COVID-19. Hepcidin and serum ferritin tandem testing predicted COVID-19 severity with 94.6% specificity, while hepcidin and serum ferritin parallel testing had a sensitivity of 95.7%. CONCLUSIONS Iron homeostasis had a robust association with the occurrence of severe COVID-19. Iron homeostasis determinations were specific and sensitive for the early prediction of disease severity in COVID-19 patients and thus have clinical utility.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Ferritins/blood , Hepcidins/blood , Pandemics , Pneumonia, Viral/blood , Adult , Aged , Area Under Curve , Biomarkers , COVID-19 , Female , Homeostasis , Humans , Iron/metabolism , Logistic Models , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
7.
Anal Chem ; 92(13): 9399-9404, 2020 07 07.
Article in English | MEDLINE | ID: covidwho-342738

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a public health emergency. The reverse transcriptase real-time quantitative PCR (qRT-PCR) test is currently considered as the gold standard in the laboratory for the etiological detection of COVID-19. However, qRT-PCR results could be false-negative due to the inadequate sensitivity of qRT-PCR. In this study, we have developed and evaluated a novel one-step single-tube nested quantitative real-time PCR (OSN-qRT-PCR) assay for the highly sensitive detection of SARS-CoV-2 targeting the ORF1ab and N genes. The sensitivity of the OSN-qRT-PCR assay was 1 copy/reaction and 10-fold higher than that of the commercial qRT-PCR kit (10 copies/reaction). The clinical performance of the OSN-qRT-PCR assay was evaluated using 181 clinical samples. Among them, 14 qRT-PCR-negative samples (7 had no repetitive results and 7 had no cycle threshold (CT) values) were detected by OSN-qRT-PCR. Moreover, the 7 qRT-PCR-positives in the qRT-PCR gray zone (CT values of ORF1ab ranged from 37.48 to 39.07, and CT values of N ranged from 37.34 to 38.75) were out of the gray zone and thus were deemed to be positive by OSN-qRT-PCR, indicating that the positivity of these samples is confirmative. Compared to the qRT-PCR kit, the OSN-qRT-PCR assay revealed higher sensitivity and specificity, showing better suitability to clinical applications for the detection of SARS-CoV-2 in patients with low viral load.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Female , Humans , Male , Middle Aged , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Polyproteins , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2 , Sensitivity and Specificity , Viral Proteins/genetics
8.
Clinical Microbiology and Infection ; 2020.
Article | WHO COVID | ID: covidwho-276597

ABSTRACT

Objectives To evaluate the performance of an ultra-fast single-tube nucleic acid isothermal amplification detection assay for SARS-CoV-2 RNA using clinical samples from multiple centers. Methods A reverse transcription recombinase-aided amplification (RT-RAA) assay for SARS-CoV-2 was conducted within 15minutesat39°C with portable instruments after addition of extracted RNA. The clinical performance of RT-RAA assay was evaluated using 947 clinical samples from five institutions in four regions of China, and the approved commercial real-time fluorescent RT-PCR (qRT-PCR) kits were used for parallel detection. The sensitivity and specificity of RT-RAA were compared and analyzed. Results The RT-RAA test results of 926 samples were consistent with those of qRT-PCR (330 were positive, 596 were negative) and 21 were inconsistent. The sensitivity and specificity of RT-RAA was 97.63% [330/338, 95% confidence interval (CI): 95.21 to 98.90] and 97.87% (596/609, 95% CI: 96.28 to 98.81), respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 96.21% (330/343, 95% CI: 93.45 to 97.88), and 98.68% (596/604, 95% CI: 97.30 to 99.38), respectively. The total coincidence rate was 97.78% (926/947, 95% CI: 96.80 to 98.70) and the Kappa was 0.952 (P <0.05). Conclusion With comparable sensitivity and specificity to the commercial qRT-PCR kits, RT-RAA assay for SARS-CoV-2 exhibited distinctive advantages of simplicity and rapidity in terms of operation and turn-around time.

SELECTION OF CITATIONS
SEARCH DETAIL